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ABSTRACT 

For any  divis ion r ing D and any two simple Ar t in ian  algebras  finite 

d imens iona l  over F ---- Center (D)  we character ize  the  min imal  size of an 

F -ex t ens ion  of D t h a t  contains  commut ing  images of these algebras.  In 

pa r t i cu la r  we show t h a t  if D contains  subalgebras  of coprime dimensions  

n and  m then  they  have commut ing  conjugates  in D, and  D conta ins  a 

suba lgebra  of d imens ion  nm. 

1. I n t r o d u c t i o n  

Throughout  this paper, D will denote an arbi trary division ring, and F its center. 

All rings are F-algebras,  all embeddings and isomorphisms are over F.  

The s tudy of algebraic elements in division rings goes back to Wedderburn 

[6], who proved that  every irreducible polynomial in F[x] which has a root a E 

D, splits to linear factors over D, all of the form x - a', for a I conjugates of 

a in D. Hence, any two algebraic elements of D are conjugate if and only if 

they have the same minimal polynomial over F. Jacobson [3] used a module- 

theoretic approach to improve Wedderburn's method. His results include a theory 

of algebraic matrices over D, and the same approach will be used here. 

In this paper,  we characterize the minimal extension of D which contains an 

image of a given finite-dimensional simple algebra A (Lemma 4), using the same 
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lemma used by Schofield [5, Chapter 9] in his analysis of finite-dimensional sub- 

algebras in coproducts of division rings. Then we go on to characterize the 

minimal extension of D that contains commuting (elementwise) images of two 

given finite-dimensional F-algebras A and B (Theorem 6). In particular, if A 

and B are subalgebras of D, of coprime dimensions n and m over F, then they 

are shown to have commuting conjugates in D itself (Theorem 5) and thus D 

contains a subalgebra of dimension nm. In section 4, we apply the results from 

the first two sections to find the minimal extension of D which contains a root for 

a given irreducible polynomial over F (Proposition 9). Finally (Corollary 11) we 

take two irreducible polynomials over F and explicitly find all commuting pairs 

of roots in finite extensions of D. 

Historical Note: This paper represents an at tempt to formalize and generalize 

an idea presented by the late Prof. Amitsur prior to his untimely death. The 

second author hopes this might serve as a fitting tribute to his memory. 

2. T h e  canon ica l  e m b e d d i n g  

Throughout  this section, we look for the minimal size of matrices over D that  

contain a homomorphic image of a given simple finite-dimensional F-algebra A. 

Our main tool is the following lemma, noted by Schofield in [5, Lemma 9.1]; we 

repeat the proof for the reader's convenience. 

SCHOFIELD'S LEMMA: I f  A is a simple ring, finite dimensional over F, and i f  

D ®y A ° has a simple module M which is of dimension zJ over D, then for all t, 

A is embeddable in Mr(D) ¢==~ ~ ]t. 

Proof: Note that D ®F A ° is simple Artinian and so all its modules are 

isomorphic to direct sums of copies of M. By hypothesis M is isomorphic to 

D (~) over D. Hence: 

A "--* Mr(D) ~ A ° ~ Mt (D  °) ~ EndD D (t) 

D(0 is a left D ®F A °-module ~ ~ ] t. | 

The following are straightforward consequences: 

LEMMA 1: IYA  is embeddable into R, for R any D-ring such that [R : D]~ = t, 

then v I t. 

Proof: Because R - EndRR "--* EndRD - Mr(D).  | 
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LEMMA 2: If  A is embeddable in Mn(D) and in Mm(D), then it is 

embeddable in MgCa(,,.,~)(D). 

Denote the dimension of A over F by n, the dimension of the simple D ®F A °- 

module over D b y ,  = (A I D), an image of A inside M,(D) by A (it is unique 

up to conjugacy), and the centralizer of A in M~(D) by DA (again, it is unique 

up to conjugacy in M,(D)). 

LEMMA 3: (Using the above notations) 

(i) L' [ n, D ®F A ° ~ M~ (DA) and DA is a division ring. 

(ii) I f  A has an isomorphic image A in Mr(D), then Mr(D) ®v A ° TM 

Mn(CM,(D)(A)), for CM,(D)(A) the centralizer of .~ in Mr(D). Further- 

more, CM,(D)(A) is a division ring if and only if t = v, A is conjugate to 

-A, and CM,(D)(A) is conjugate to DA. 

Proof: Assume that  A has an isomorphic image ft. in Mr(D). Since [A: F] = n 

(as in [1, p. 42]) A can be imbedded in Mn(F) by the left regular representation, 

and its centralizer there is isomorphic to (~)o. So we can calculate the central- 

izer of F ®F A ~ A ®F F inside Mr(D) NF Mn(F) and get Mr(D) NF A ° 

Mn (CM,(D)(A)). 
Now A ~-+ M~(F) C_ M~(D), hence v I n. So take t = u in the last isomorphism 

to get M,(D ®F A °) TM M,(M~(DA)) which implies D ®F A ° -~ M~(DA). The 

underlying division ring of D®FA °, by the density theorem, is EndD®rA o D (~) C_ 

EndD D(~); this division ring consists of all endomorphisms over D of our simple 

module D(") that commute ,with the right multiplication by elements of A. Using 

the right regular representation, EndD D (') ~ M,(D), and our division ring is 

CM. (D) (A) = DA. This completes the proof of (i). 

Since u It, 

Mn(M~(DA)) = Mt~-(DA). ="~ Mt(D ®F A °) ="~ Mr(D) @F A ° =Mn(~ CMt(D)(A)) 

hence CMdD)(A) TM M~(DA) cannot be a division ring unless t = y, and then 

and A are finite-dimensional subalgebras of M~(D), isomorphic over F,  and 

therefore conjugate. | 

Furthemore, when A is not necessarily a simple algebra, we can still use 

Schofield's lemma to find the minimal size of matrices over D which contain 

a homomorphic image of A: 
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LEMMA 4: I f  A is a finite-dimensional algebra over F, and t is the minimal 

integer such that Mr(D) contains a homomorphic image of A, then that image 

must be simple. 

Proof" Denote a homomorphic image of A in Mr(D) by A. By the minimali ty 

of t, D (t) is a simple module over D ® F A  °. D (t) is also a faithful module since no 

element o f A  ° ~ Mr(D) ° annihilates D (t). Finally, D~)FA ° is primitive Artinian 

hence a simple Artinian ring, which implies that  A is a simple ring. | 

3. C o m m u t i n g  s u b a l g e b r a s  

Using only Lemma 2 we can deduce: 

THEOREM 5: I r A  and B are two finite-dimensional subalgebras o lD,  of coprime 

dimensions n and m (resp.) over F, then A has a conjugate in the centralizer of 

B i n D .  

Proof." If we denote the center of A by K and the center of B by L, the center 

of A ®g B is K ®p L which is a field, because K and L are of coprime dimensions 

over F.  Since every ideal of A ®F B must meet K ®F L, A ®F B is a simple 

ring. I t  is of dimension nm over F. Moreover, A '---* M,~(F) and so A ®g B 

Mn(F)  ®g B TM M,~(B) ~ M,~(D). In the same manner, A ®F B ~ Mm(D).  

Now we use Lemma 2 to deduce that  A ®F B is embeddable in D itself. Using 

Skolem-Noether,  this means that  a conjugate of A commutes elementwise with 

a conjugate of B. | 

In order to generalize this theorem, we take any two simple Artinian algebras 

A and B, finite dimensional over F, and try to find the minimal size of matrices 

over D which contain images of A and of B which commute elementwise. I t  is 

easy to see that  containing such commuting images is the same as containing a 

homomorphic image of A ®F B (since all embeddings are over F).  In fact, it 

suffices to look for simple images of A ®F B due to Lemma 4. 

Notations: 

• Denote the center of A by K,  and the center of B by L. 

• Note that  A ®F B -- A ® g  (K ®F L) ®L B and that  any simple image of 

A Q F  B is of the form AQK E ®L B for E a field image of K ®F L. Choose 

one simple image and denote it by S. 
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• Further denote [A : F] = n, [ B :  F] = m, (A I D) = y, (B I D) = #, 

[S:  B] = [E ®h" A:  L] : n', [S: A] : [E @L B :  K] : m'. 

• (E ®L B IDA) (and symmetrically (E ®K A I DB)) is well defined since 

E®L B is simple Artinian, it is of dimension m' over K, and K is the center 

of the division ring CM~(D)(A) : DA according to the double centralizer 

theorem. So denote (E ®L B [DA) : #' and (E ®K A ] DB) : P'. 

p' m'. F] = Recall that  by Lemma 3: , I n, # I m, , '  I n', I Clearly [S : 

n • m r : m • n'. We get the analog of this equality over D: 

THEOREM 6: (Using the above notations) For any simple image S of A ®F B, 

and E its center, 

( S I D )  = ( A I D )  • (E®L B IDA) : ( B I D ) "  (E®K A [ D B ) .  

Proof: Use Lemma 3 twice: 

D ®F (S) ° ~- (D ®F A °) ®K (E ®L B) ° ~- M e (DA ®K (E Q.L B) °) 

~ (( ~, (C~. , (D)(~  ~) )  = M~ m, DA)E®B) : M~ 7 

since (DA)E®B = CM,,(DA)(E ®L B)  = C M . , , ( D ) ( A  , B )  is a division ring and 

[S:  F] = n - m ' ,  (S I D) = u.  tt'. We can reverse the order and adjoin B before 
i 

m-- = m .  ~, ~ v #r which is the required A, and thus get that  ~ - ~, ~ • = # .  v r, 

equality. | 

COROLLARY 7: f f  A and B are subalgebras of D, and S is any simple image of 

A ®F B, then (S I D) divides both n r = IS: A] and m' = IS: B]. 

Remark 8: Other facts that  might come handy when trying to evaluate (S I D): 

1. When K / F  is a Galois extension, so is E / L  and E = K ®KNL L. Then 

[E :  L] divides [ K :  F], which translates to n ' l n  (because n'  = [S:  B] = 

[A: K ] [ E :  L] divides [A: K] [K :  L] = n). 

2. A ® F B i s s i m p l e ~ S = A ® F B ~  K ® F L i s a f i e l d  ( K a n d L a r e  

F-linearly disjoint) ~ n r -- n ~ m r -- m. (For example, when one 

of the subalgebras is central, or if [K : F] and [L : F] are coprime, which 

covers the case of Theorem 5.) 

3. If both K / F  and L / F  are Galois, or if K and L are F-linearly disjoint, 

then (S I D) divides both gcd(n, m) .  lcm(v, #) and gcd(n, m) .  lcm(v', #'). 
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4. L o o k i n g  for  r oo t s  

In this section, we apply the former results to simple algebraic field extensions 

of F,  to characterize roots of irreducible polynomials over F, in finite extensions 

of D. 

If f ( x )  E F[x] is an irreducible polynomial of degree n, and if f ( x )  = 

f k ( x ) " ' f l ( x )  for f~(x) • D[x] irreducible over D, then the decomposition is 

not unique, but the degrees of all irreducible factors are equal [3, p. 45]. If we 

take A = Fix]~ ( f ( x ) ) ,  an n-dimensional simple extension of F,  then deg f~ (x) = 

, = ( A I D ) .  

Jacobson proves this fact by taking the maximal ideal D[x] f (x )  <~ D[x] and 

noting that  it is contained in each maximal left ideal D[x]f~(x) (Vi = 1 , . . . ,  k): 

( f k ( x ) . "  f~ (x ) ) f ( x )  = f ( x ) ( f k ( x ) . . ,  f~(x)) 

f ( x )  = f ~ - l ( X ) ' "  f l (x)  • f k ( x ) . . "  f i (x ) .  

Therefore, the simple Artinian ring D ®F A ° = D ®F Fix]~ ( f ( x ) )  -~ 

D[x] /D[x] f ( x )  has the simple module D[x]/D[x]f~(x)  for a l l / =  1 , . . . ,  k. All 

such modules are isomorphic and, in particular, of the same left dimension u over 

D. Hence deg f d x )  = u for all i, and n = u .  k. Now we apply Lemma 3: 

PROPOSITION 9: Write f l ( x )  = x ~ - d , - t x  ~-1 . . . . .  do, and denote 

1 0 . . .  0 \ 
0 1 . . .  0 

".. ".. " inside M~(D) .  

0 1 
dl .. • d~- i  

0 
0 

-5= 

0 
do 

Then: 

(i) ~ is a root o f f ( x )  

(ii) 

in My(D) .  

([4, Prop. 3.80i)] ) f ( x )  has a root a e R = Mr(D)  i f  and only i f  v I t and 

a is conjugate to a diagonal block matrix d iag(g , . . . ,  g). [In particular, all 

roots o f f ( x )  in Mt  (D) are conjugate.] 

(iii) D[x]/ D[x] f (x )  ~- M_~ (CMv(D)(-d)). 

(iv) For a e R as in (ii), EndnM R[x]/R[x] (x - a) ~ Cn(a)  and, in addition, 

R[x] (x - a) is a maximal  ideal of  R[x] i f  and only i f  CR (a) is a division 

ring, i f  and only i f  u = t and a is conjugate to ~. 

Proof: (i) The matrix g is the matrix associated with right multiplication by 

x, on the simple module D[x]/D[x]f~(x) ,  with respect to the canonical basis 
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{1, 5 , . . .  , g , - 1  }. Since right mult ipl icat ion by f ( x )  is obviously zero, g is a root  

of S(x). 
(ii) In [4, Prop.  3.7] Rowen gives a canonical form for all algebraic e lements  in 

R = Mt(D),  not  necessarily those wi th  irreducible min imal  polynomials  over F 

as in our case. 

Ident ifying with a E Mr(D) a linear t rans format ion  T(v) = va of the module  

D (t) over D, define on D (t) a s t ructure  of a D[x]/D[x]f(x) module  by x.v = T(v).  

So if we choose the basis {1, g , . . . ,  ~ , - 1 }  for each copy of the simple module  D ( ')  

in D (t), T corresponds to ~he ma t r ix  d i a g ( g , . . . ,  g). 

(iii) This  is just  L e m m a  3(ii) for A = F [ x ] /  ( f (x)} ~ F(~) .  

(iv) Again,  use L e m m a  3(ii). The  isomorphism EndnM R[x]/R[x] (x - .a) 

Cn(a) is obta ined  by sending each endomorphism ~o to ~(T) = c~ E R and not ing 

tha t  for every h(x) C R[x], ~ (~(x))  = ~ (h (x) 1) = h (x)c~,. In  par t icular ,  for 

h(x) = x - a, 0 = ~ (?-:--d) = (x - a) cv, hence (x - a) ev = s .  (x - a) ~ s = 

CR (a). | 

The  previous proposi t ion deals with roots  of polynomials  in f.d. extensions of  

D, i.e. monic factors of degree one over such extensions. A slightly more  general  

approach  yields: 

PROPOSITION 10: Let f ( x )  be an irreducible polynomial over F, f l ( x )  one of 

its irreducible factors over D, of degree u. I f  f l (X) has a monic right factor 

~ (x )  E Mt(D)[x] of degree l (or i f  f l ( x )  has a monic right factor of degree l in 

any D-ring of right dimension t over D), then u [ l • t. 

Furthermore, ~(x) generates a maximal left ideal in Mt(D)[x] iE and only if  

u = l . t .  

Proof: Jus t  take Mt(D)[x]/Mt(D)[xl~(x)  as a left module  over 

Mt(D)[x]/ < f ( x )  >-~ Mt (D[x]/ < f ( x )  > ) .  

This  module  is of degree l • t 2 over D. Using Mdri ta  equivalence, the simple 

module  over Mt(D)[x]/ < f ( x )  > is of degree ~ .  t over D. Hence ~, I I .  t, and 

t ha t  module  is simple if and only if u = l • t. I 

Finally, we take two irreducible polynomials  over F:  f ( x )  and g(y) of degrees 

n and m (resp.), and we look for all pairs of roots  (a, b) in finite extensions over 

D, such t ha t  a is a root  of f ( x )  and b is a root  of g(y) and they  c o m m u t e .  
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Fix I any maximal ideal containing ( f (x) ,  g(y)) in F[x, y]. Then in our case S = 

E = F[x, y ] / I =  F(a, b) for a = x + I and b = y + I. Write I = ( f (x ) ,  ~(x, y)) = 

(g(y), ¢(x,  y)), so ~(a, y) is an irreducible factor of g(y) over F(a) of degree m', 

and ¢(x ,  b) is an irreducible factor of f ( x )  over F(b) of degree n'. Of course any 

choice of I corresponds to another choice of irreducible factors and to another 

choice of S. 

The degree of all irreducible factors of f ( x )  (resp. g(y)) over D is u (resp. 

#), and the degree of all irreducible factors of ~(a, y) (resp. ¢(x,  b)) over DR(a) 

(resp. DR(b)) is #' (resp. u'). Denote, as in Proposition 9, by ~ C M~(D) the 

matrix associated to an irreducible factor of f ( x )  over D, and by b E M ~ ,  (D) 

the matrix associated to all irreducible factor of qo(~, y) over DF(~). (We do not 

distinguish between a matrix c E Mk(S)  and its image d iag(c , . . . ,  c) C Mkl(S).)  

Now Theorem 6 together with Proposition 9 give: 

COROLLARY 11: Mt (D) contains a root o f f ( x )  and a root old(y) which commute 

if  and only i f  u# r = #u ~ divides t (for one of the possible choices for I and hence 

for #' and u'). Moreover, (~d,b) E Mr(D) issuch a commuting pair of roots i f  

and only i f  (~d,b) = (cgc-l,  (cd)-b(cd) - ' )  for some c, d E Mt(D),  s.t. d commutes 

with -5. 
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