FINITE-DIMENSIONAL SUBALGEBRAS OF DIVISION RINGS

BY

S. A. AMITSUR AND D. BAUM

Institute of Mathematics, The Hebrew University of Jerusalem Jerusalem 91904, Israel e-mail: dalbaum@math.huji.ac.il

ABSTRACT

For any division ring D and any two simple Artinian algebras finite dimensional over $F = \text{Center}(D)$ we characterize the minimal size of an F -extension of D that contains commuting images of these algebras. In particular we show that if D contains subalgebras of coprime dimensions n and m then they have commuting conjugates in D , and D contains a subalgebra of dimension *nm.*

1. Introduction

Throughout this paper, D will denote an arbitrary division ring, and F its center. All rings are F-algebras, all embeddings and isomorphisms are over F.

The study of algebraic elements in division rings goes back to Wedderburn [6], who proved that every irreducible polynomial in $F[x]$ which has a root $a \in$ D, splits to linear factors over D, all of the form $x - a'$, for a' conjugates of a in D . Hence, any two algebraic elements of D are conjugate if and only if they have the same minimal polynomial over F . Jacobson [3] used a moduletheoretic approach to improve Wedderburn's method. His results include a theory of algebraic matrices over D , and the same approach will be used here.

In this paper, we characterize the minimal extension of D which contains an image of a given finite-dimensional simple algebra A (Lemma 4), using the same

Received June 1, 1995 and in revised form March 25, 1996

lemma used by Schofield [5, Chapter 9] in his analysis of finite-dimensional subalgebras in coproducts of division rings. Then we go on to characterize the minimal extension of D that contains commuting (elementwise) images of two given finite-dimensional F-algebras A and B (Theorem 6). In particular, if A and B are subalgebras of D, of coprime dimensions n and m over F , then they are shown to have commuting conjugates in D itself (Theorem 5) and thus D contains a subalgebra of dimension *nm.* In section 4, we apply the results from the first two sections to find the minimal extension of D which contains a root for a given irreducible polynomial over F (Proposition 9). Finally (Corollary 11) we take two irreducible polynomials over F and explicitly find all commuting pairs of roots in finite extensions of D.

Historical Note: This paper represents an attempt to formalize and generalize an idea presented by the late Prof. Amitsur prior to his untimely death. The second author hopes this might serve as a fitting tribute to his memory.

2. The canonical embedding

Throughout this section, we look for the minimal size of matrices over D that contain a homomorphic image of a given simple finite-dimensional F-algebra A. Our main tool is the following lemma, noted by Schofield in [5, Lemma 9.1]; we repeat the proof for the reader's convenience.

SCHOFIELD'S LEMMA: If A is a simple ring, finite dimensional over F, and if $D \otimes_F A^{\circ}$ has a simple module M which is of dimension ν over D, then for all t,

A is embeddable in $M_t(D) \iff \nu \mid t$.

Proof: Note that $D \otimes_F A^{\circ}$ is simple Artinian and so all its modules are isomorphic to direct sums of copies of M . By hypothesis M is isomorphic to $D^{(\nu)}$ over D. Hence:

$$
A \hookrightarrow M_t(D) \Longleftrightarrow A^\circ \hookrightarrow M_t(D^\circ) \cong \text{End}_D D^{(t)} \Longleftrightarrow
$$

$$
D^{(t)} \text{ is a left } D \otimes_F A^\circ \text{-module} \Longleftrightarrow \nu \mid t.
$$

The following are straightforward consequences:

LEMMA 1: If A is embeddable into *R*, for *R* any *D*-ring such that $[R: D]_r = t$, *then* $\nu \mid t$.

Proof: Because $R \cong \text{End } R_R \hookrightarrow \text{End } R_D \cong M_t(D)$.

LEMMA 2: If A is embeddable in $M_n(D)$ and in $M_m(D)$, then it is *embeddable in* $M_{gcd(n,m)}(D)$.

Denote the dimension of A over F by n, the dimension of the simple $D \otimes_F A^{\circ}$ module over D by $\nu = (A | D)$, an image of A inside $M_{\nu}(D)$ by \overline{A} (it is unique up to conjugacy), and the centralizer of \overline{A} in $M_{\nu}(D)$ by D_{A} (again, it is unique up to conjugacy in $M_{\nu}(D)$).

LEMMA 3: *(Using* the *above notations)*

- (i) $\nu | n, D \otimes_F A^{\circ} \cong M_{\frac{n}{n}}(D_A)$ and D_A is a division ring.
- (ii) If A has an isomorphic image \widetilde{A} in $M_t(D)$, then $M_t(D) \otimes_F A^{\circ} \cong$ $M_n(C_{M_r(D)}(\widetilde{A}))$, for $C_{M_r(D)}(\widetilde{A})$ the centralizer of \widetilde{A} in $M_t(D)$. Further*more,* $C_{M_{\epsilon}(D)}(\tilde{A})$ *is a division ring if and only if* $t = \nu$ *,* \tilde{A} *is conjugate to* \overline{A} , and $C_{M_{\epsilon}(D)}(\widetilde{A})$ is conjugate to D_{A} .

Proof: Assume that A has an isomorphic image \widetilde{A} in $M_t(D)$. Since $[\widetilde{A}:F] = n$ (as in [1, p. 42]) \widetilde{A} can be imbedded in $M_n(F)$ by the left regular representation, and its centralizer there is isomorphic to $({\widetilde{A}})^\circ$. So we can calculate the centralizer of $F \otimes_F \widetilde{A} \cong \widetilde{A} \otimes_F F$ inside $M_t(D) \otimes_F M_n(F)$ and get $M_t(D) \otimes_F A^{\circ} \cong$ $M_n(C_{M_n(D)}(\widetilde{A})).$

Now $A \hookrightarrow M_n(F) \subseteq M_n(D)$, hence $\nu \mid n$. So take $t = \nu$ in the last isomorphism to get $M_{\nu}(D \otimes_F A^{\circ}) \cong M_{\nu}(M_{\frac{n}{2}}(D_A))$ which implies $D \otimes_F A^{\circ} \cong M_{\frac{n}{2}}(D_A)$. The underlying division ring of $D \otimes_F A^{\circ}$, by the density theorem, is $\text{End}_{D \otimes_F A^{\circ}} D^{(\nu)} \subseteq$ $\text{End}_D D^{(\nu)}$; this division ring consists of all endomorphisms over D of our simple module $D^{(\nu)}$ that commute with the right multiplication by elements of \overline{A} . Using the right regular representation, $\text{End}_D D^{(\nu)} \cong M_{\nu}(D)$, and our division ring is $C_{M_{\nu}(D)}(\overline{A}) = D_A$. This completes the proof of (i).

Since $\nu \mid t$,

$$
M_n(M_{\frac{t}{\nu}}(D_A))=M_{t\frac{n}{\nu}}(D_A)\cong M_t(D\otimes_F A^{\circ})\cong M_t(D)\otimes_F A^{\circ}\cong M_n(C_{M_t(D)}(\widetilde{A}))
$$

hence $C_{M_t(D)}(\widetilde{A}) \cong M_{\frac{t}{n}}(D_A)$ cannot be a division ring unless $t = \nu$, and then A and \overline{A} are finite-dimensional subalgebras of $M_{\nu}(D)$, isomorphic over F, and therefore conjugate. |

Furthemore, when A is not necessarily a simple algebra, we can still use Schofield's lemma to find the minimal size of matrices over D which contain a homomorphic image of A:

LEMMA 4: *If A is a finite-dimensional* algebra *over F, and t is the minimal* integer such that $M_t(D)$ contains a homomorphic image of A, then that image *must* be *simple.*

Proof: Denote a homomorphic image of A in $M_t(D)$ by \overline{A} . By the minimality of *t*, $D^{(t)}$ is a simple module over $D \otimes_F \overline{A}^{\circ}$. $D^{(t)}$ is also a faithful module since no element of $\overline{A}^{\circ} \hookrightarrow M_t(D)^{\circ}$ annihilates $D^{(t)}$. Finally, $D \otimes_F \overline{A}^{\circ}$ is primitive Artinian hence a simple Artinian ring, which implies that \overline{A} is a simple ring.

3. Commuting subalgebras

Using only Lemma 2 we can deduce:

THEOREM 5: *IrA and B* are *two finite-dimensional subalgebras olD, of coprime dimensions n and m (resp.) over F, then A has a conjugate in the centralizer of B inD.*

Proof. If we denote the center of A by K and the center of B by L, the center of $A \otimes_F B$ is $K \otimes_F L$ which is a field, because K and L are of coprime dimensions over F. Since every ideal of $A \otimes_F B$ must meet $K \otimes_F L$, $A \otimes_F B$ is a simple ring. It is of dimension *nm* over F. Moreover, $A \hookrightarrow M_n(F)$ and so $A \otimes_F B \hookrightarrow$ $M_n(F) \otimes_F B \cong M_n(B) \hookrightarrow M_n(D)$. In the same manner, $A \otimes_F B \hookrightarrow M_m(D)$. Now we use Lemma 2 to deduce that $A \otimes_F B$ is embeddable in D itself. Using Skolem-Noether, this means that a conjugate of A commutes elementwise with a conjugate of B .

In order to generalize this theorem, we take any two simple Artinian algebras A and B , finite dimensional over F , and try to find the minimal size of matrices over D which contain images of A and of B which commute elementwise. It is easy to see that containing such commuting images is the same as containing a homomorphic image of $A \otimes_F B$ (since all embeddings are over F). In fact, it suffices to look for simple images of $A \otimes_F B$ due to Lemma 4.

Notations:

- Denote the center of A by K , and the center of B by L .
- Note that $A \otimes_F B \cong A \otimes_K (K \otimes_F L) \otimes_L B$ and that any simple image of $A \otimes_F B$ is of the form $A \otimes_K E \otimes_L B$ for E a field image of $K \otimes_F L$. Choose one simple image and denote it by S.
- Further denote $[A : F] = n$, $[B : F] = m$, $(A | D) = \nu$, $(B | D) = \mu$, $[S: B] = [E \otimes_K A: L] = n', [S: A] = [E \otimes_L B: K] = m'.$
- $(E \otimes_L B \mid D_A)$ (and symmetrically $(E \otimes_K A \mid D_B)$) is well defined since $E \otimes_L B$ is simple Artinian, it is of dimension m' over K, and K is the center of the division ring $C_{M_r(D)}(\overline{A}) = D_A$ according to the double centralizer theorem. So denote $(E \otimes_L B \mid D_A) = \mu'$ and $(E \otimes_K A \mid D_B) = \nu'$.

Recall that by Lemma 3: $\nu \mid n, \mu \mid m, \nu' \mid n', \mu' \mid m'$. Clearly $[S : F] =$ $n \cdot m' = m \cdot n'$. We get the analog of this equality over D:

THEOREM 6: (Using the above notations) For any simple image S of $A \otimes_F B$, *and E its center,*

$$
(S | D) = (A | D) \cdot (E \otimes_L B | D_A) = (B | D) \cdot (E \otimes_K A | D_B).
$$

Proof: Use Lemma 3 twice:

$$
D \otimes_F (S)^\circ \cong (D \otimes_F A^\circ) \otimes_K (E \otimes_L B)^\circ \cong M_{\frac{n}{\nu}} (D_A \otimes_K (E \otimes_L B)^\circ)
$$

$$
\cong M_{\frac{n}{\nu} \cdot \frac{m'}{\mu'}} ((D_A)_{E \otimes B}) = M_{\frac{n}{\nu} \cdot \frac{m'}{\mu'}} (C_{M_{\nu\mu'}}(D) (\overline{A}, \overline{B}))
$$

since $(D_A)_{E\otimes B} = C_{M_{n'}(D_A)}(\overline{E\otimes_L B}) = C_{M_{n'}(D)}(\overline{A}, \overline{B})$ is a division ring and $[S: F] = n \cdot m'$, $(S | D) = \nu \cdot \mu'$. We can reverse the order and adjoin B before A, and thus get that $\frac{n}{\nu} \cdot \frac{m'}{\nu'} = \frac{m}{\nu} \cdot \frac{n'}{\nu'} \implies \nu \cdot \mu' = \mu \cdot \nu'$, which is the required equality. |

COROLLARY 7: *ff A and B* are *subalgebras of D, and S is any simple image of* $A \otimes_F B$, then $(S | D)$ divides both $n' = [S : A]$ and $m' = [S : B]$.

Remark 8: Other facts that might come handy when trying to evaluate $(S | D)$:

- 1. When K/F is a Galois extension, so is E/L and $E = K \otimes_{K \cap L} L$. Then $[E: L]$ divides $[K: F]$, which translates to $n' | n$ (because $n' = [S: B] =$ $[A: K][E:L]$ divides $[A: K][K:L] = n$.
- 2. $A \otimes_F B$ is simple $\iff S = A \otimes_F B \iff K \otimes_F L$ is a field (K and L are F-linearly disjoint) $\iff n' = n \iff m' = m$. (For example, when one of the subalgebras is central, or if $[K : F]$ and $[L : F]$ are coprime, which covers the case of Theorem 5.)
- 3. If both K/F and L/F are Galois, or if K and L are F-linearly disjoint, then $(S | D)$ divides both $gcd(n, m) \cdot lcm(\nu, \mu)$ and $gcd(n, m) \cdot lcm(\nu', \mu').$

4. Looking for roots

In this section, we apply the former results to simple algebraic field extensions of F , to characterize roots of irreducible polynomials over F , in finite extensions of D.

If $f(x) \in F[x]$ is an irreducible polynomial of degree n, and if $f(x) =$ $f_k(x) \cdots f_1(x)$ for $f_i(x) \in D[x]$ irreducible over D, then the decomposition is not unique, but the degrees of all irreducible factors are equal [3, p. 45]. If we take $A = F[x]/\langle f(x) \rangle$, an *n*-dimensional simple extension of F, then deg $f_i(x) =$ $\nu = (A | D).$

Jacobson proves this fact by taking the maximal ideal $D[x]f(x) \triangleleft D[x]$ and noting that it is contained in each maximal left ideal $D[x]f_i(x)$ ($\forall i = 1, \ldots, k$):

$$
(f_k(x)\cdots f_i(x))f(x) = f(x)(f_k(x)\cdots f_i(x))
$$

\n
$$
\implies f(x) = f_{i-1}(x)\cdots f_1(x)\cdot f_k(x)\cdots f_i(x).
$$

Therefore, the simple Artinian ring $D \otimes_F A^{\circ} = D \otimes_F F[x]/\langle f(x) \rangle \cong$ $D[x]/D[x]f(x)$ has the simple module $D[x]/D[x]f_i(x)$ for all $i = 1, \ldots, k$. All such modules are isomorphic and, in particular, of the same left dimension ν over D. Hence deg $f_i(x) = \nu$ for all i, and $n = \nu \cdot k$. Now we apply Lemma 3:

PROPOSITION 9: Write $f_1(x) = x^{\nu} - d_{\nu-1}x^{\nu-1} - \cdots - d_0$, and denote

$$
\overline{a} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & & & 0 & 1 \\ d_0 & d_1 & \dots & & d_{\nu-1} \end{pmatrix} \text{ inside } M_{\nu}(D).
$$

Then:

- (i) \bar{a} is a root of $f(x)$ in $M_{\nu}(D)$.
- (ii) ([4, Prop. 3.8(ii)]) $f(x)$ has a root $a \in R = M_t(D)$ if and only if $\nu \mid t$ and *a* is conjugate to a diagonal block matrix $diag(\overline{a}, \ldots, \overline{a})$. [In particular, all roots of $f(x)$ in $M_t(D)$ are conjugate.]
- (iii) $D[x]/D[x]f(x) \cong M_{\frac{n}{L}}(C_{M_{\nu}(D)}(\overline{a})).$
- (iv) For $a \in R$ as in (ii), $\text{End}_{R[x]} R[x]/R[x]$ ($x a$) $\cong C_R(a)$ and, in addition, $R[x]$ (x - a) is a maximal ideal of $R[x]$ if and only if $C_R(a)$ is a division *ring, if and only if* $\nu = t$ *and a is conjugate to* \overline{a} *.*

Proof: (i) The matrix \bar{a} is the matrix associated with right multiplication by x, on the simple module $D[x]/D[x]f_i(x)$, with respect to the canonical basis ${\{\overline{1}, \overline{x}, \ldots, \overline{x}^{\nu-1}\}}$. Since right multiplication by $f(x)$ is obviously zero, \overline{a} is a root of $f(x)$.

(ii) In [4, Prop. 3.7] Rowen gives a canonical form for all algebraic elements in $R = M_t(D)$, not necessarily those with irreducible minimal polynomials over F as in our case.

Identifying with $a \in M_t(D)$ a linear transformation $T(v) = va$ of the module $D^{(t)}$ over D, define on $D^{(t)}$ a structure of a $D[x]/D[x]f(x)$ module by $x \cdot v = T(v)$. So if we choose the basis $\{\overline{1}, \overline{x}, \ldots, \overline{x}^{\nu-1}\}$ for each copy of the simple module $D^{(\nu)}$ in $D^{(t)}$, T corresponds to the matrix diag($\overline{a}, \ldots, \overline{a}$).

(iii) This is just Lemma 3(ii) for $A = F[x]/\langle f(x) \rangle \cong F(\overline{a})$.

(iv) Again, use Lemma 3(ii). The isomorphism $\text{End}_{R[x]} R[x]/R[x] (x - a) \cong$ $C_R(a)$ is obtained by sending each endomorphism φ to $\varphi(\overline{1}) = c_{\varphi} \in R$ and noting that for every $h(x) \in R[x], \varphi(\overline{h(x)}) = \varphi(h(x)) \overline{1} = \overline{h(x) c_{\varphi}}$. In particular, for $h(x) = x - a$, $\overline{0} = \varphi(\overline{x-a}) = \overline{(x-a)c_{\varphi}}$, hence $(x-a)c_{\varphi} = s \cdot (x-a) \Longrightarrow s =$ $c_{\varphi} \in C_R (a)$.

The previous proposition deals with roots of polynomials in f.d. extensions of D, i.e. monic factors of degree one over such extensions. A slightly more general approach yields:

PROPOSITION 10: Let $f(x)$ be an irreducible polynomial over F, $f_1(x)$ one of *its irreducible factors over D, of degree v. If* $f_1(x)$ *has a monic right factor* $\varphi(x) \in M_t(D)[x]$ of degree l (or if $f_1(x)$ has a monic right factor of degree l in any D-ring of right dimension t over D), then $\nu \mid l \cdot t$.

Furthermore, $\varphi(x)$ generates a maximal left ideal in $M_t(D)[x]$ if and only if $\nu=l\cdot t.$

Proof: Just take $M_t(D)[x]/M_t(D)[x]\varphi(x)$ as a left module over

$$
M_t(D)[x]/\cong M_t(D[x]/)\,.
$$

This module is of degree $l \cdot t^2$ over D. Using Morita equivalence, the simple module over $M_t(D)[x]/ < f(x) >$ is of degree $\nu \cdot t$ over D. Hence $\nu \mid l \cdot t$, and that module is simple if and only if $\nu = l \cdot t$.

Finally, we take two irreducible polynomials over $F: f(x)$ and $g(y)$ of degrees n and m (resp.), and we look for all pairs of roots (a, b) in finite extensions over D, such that a is a root of $f(x)$ and b is a root of $g(y)$ and they commute.

Fix I any maximal ideal containing $\langle f(x), g(y) \rangle$ in $F[x, y]$. Then in our case $S =$ $E = F[x, y]/I = F(a, b)$ for $a = x + I$ and $b = y + I$. Write $I = \langle f(x), \varphi(x, y) \rangle =$ $\langle g(y), \psi(x, y) \rangle$, so $\varphi(a, y)$ is an irreducible factor of $g(y)$ over $F(a)$ of degree m', and $\psi(x, b)$ is an irreducible factor of $f(x)$ over $F(b)$ of degree n'. Of course any choice of I corresponds to another choice of irreducible factors and to another choice of S.

The degree of all irreducible factors of $f(x)$ (resp. $g(y)$) over D is ν (resp. μ), and the degree of all irreducible factors of $\varphi(a, y)$ (resp. $\psi(x, b)$) over $D_{F(a)}$ (resp. $D_{F(b)}$) is μ' (resp. ν'). Denote, as in Proposition 9, by $\bar{a} \in M_{\nu}(D)$ the matrix associated to an irreducible factor of $f(x)$ over D, and by $\overline{b} \in M_{\nu\mu'}(D)$ the matrix associated to an irreducible factor of $\varphi(\bar{a}, y)$ over $D_{F(\bar{a})}$. (We do not distinguish between a matrix $c \in M_k(S)$ and its image diag $(c, \ldots, c) \in M_{kl}(S)$.) Now Theorem 6 together with Proposition 9 give:

COROLLARY 11: $M_t(D)$ contains a root of $f(x)$ and a root of $g(y)$ which commute *if and only if* $\nu \mu' = \mu \nu'$ divides t (for one of the possible choices for I and hence *for* μ' and ν'). Moreover, $(\tilde{a}, \tilde{b}) \in M_t(D)$ is such a commuting pair of roots if *and only if* $(\tilde{a},\tilde{b}) = (c\overline{a}c^{-1}, (cd)\overline{b}(cd)^{-1})$ for some $c, d \in M_t(D)$, s.t. d commutes $with \bar{a}.$

References

- [1] P. K. Draxl, *Skew fields,* London Mathematical Society Lecture Note Series 81, Cambridge University Press, 1983.
- [2] D. Haile and L. H. Rowen, *Factorizations of polynomials over division algebras,* Algebra Colloquium 2 (1995), 145-156.
- [3] N. Jacobson, *The Theory of Rings,* American Mathematical Society Surveys II, 1943.
- [4] L. H. Rowen, *Wedderburn's method and algebraic elements of simple Artinian rings,* in *Azumaya Algebras, Actions and Modules in Honor of G. Azumaya* (D. Haile, ed.), Contemporary Mathematics 124 (1992), 179-202.
- [5] A. H. Schofield, *Representations of rings over skew fields,* London Mathematical Society Lecture Note Series 92, Cambridge University Press, 1985.
- [6] J. H. M. Wedderburn, *On division algebras,* Transactions of the American Mathematical Society 22 (1921), 129-135.